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UNCP physics students investigated short segments 
(length ~ 10-45 cm, resistance ~ 33-45 mW) of 
copper wire (AWG 30, 24,22) to integrate 
information using an exhaustive list of activities.

• Effects of 60 Hz and 120 Hz notch filters of the SR 
830 lock-in amplifier (refutation of Keithley 
“white paper”)

• Calculation of resistance (rl/a) with wire 
diameter measured using diffraction pattern

• AC voltage characterization using SR 830 lock-in 
amplifier  (refutation of a previous AJP article)



Cannot be trusted for high accuracy constraints



The amplified voltage from the DUT is multiplied by both a 
sine and a cosine wave with the same frequency and phase 
as the applied source and then subject to a low pass filter. 
In most cases, the multiplication and filtering is performed 
digitally within the lock-in amplifier after the DUT signal is 
digitized.

Simplified block diagram of a lock-in amplifier setup 
to measure the voltage of a DUT (e.g. a wire) at low 
power. 



Extraction of signals 
buried in noise



Our latest method of choice:

VS = Vin: Supply Voltage

~190 mV; 1Hz-100KHz
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Vin =190 mV; 1Hz-100KHz

Vout =

Rwire ~ 30 mW

Rseries ~ 1 kW
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Vreal

in phase

Vimaginary

out of phase

VS = Vin to circuit

~190 mV; 1Hz-100KHz

Vout : from circuit

voltage across wire

1-10mV

LIA as “vector voltmeter”
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Industry standard--
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Alternative--?
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@

In-phase voltage vs. frequency
“choosing a frequency” 
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Suspect Claim 1: Keithley white paper
Tupta, "AC versus DC Measurement 
Methods for Low-power Nanotech
and Other Sensitive Devices", 2007

Industry standard:
use differential 
inputs @ 30Hz

~30 Hz zoom
precision, in this case



Tupta, "AC versus DC Measurement Methods for Low-power 
Nanotech and Other Sensitive Devices", 2007 



Next few slides:

Lock-in configuraiton
 1f+2f line filters
 “Sync” function
 Fixed frequency of 85 Hz

… perhaps a novel –
and potentially useful approach? 
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from an offset.  The voltage should be  
acquired with differential
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1+2 line (60 + 120 Hz) filter appears to 
provide an effective input offset 
reduction and slight noise suppression.
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The out-of phase voltage, Vy

goes to zero near



PHY 4200 final results of 1f+2f measurements at 85 kHz 

Includes comparison to theoretical result. 

internal ref 31.77+0.03 mW

external ref 31.81+0.07 mW

R = r l /a 31.6+0.8 mW

WW m3410.0m6.338~)( mmAWGRwire

“expected”

Recall, from AWG table:



The expected resistance, R of a copper wire is 

known to obey the relation:

The resistivity, r is actually temperature, T dependent –
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How the “expected” result was obtained…



The cross sectional area, a was calculated from 

measurements using optical interferometry.  The 

relation characterizing the fringe pattern generated 

by diffraction when a laser beam, with wavelength, l,  

is obstructed by a wire with diameter, d is given by:
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Measured at 4 

points along the 
length of wire
~ 50 fringes



mΩ8.06.311

yuncertaint   propagted

















































  
a

a

l

l

a

l
R



r

r
r

“Expected” result

internal ref 31.77+0.03 mW

external ref 31.81+0.07 mW

R = r l /a 31.6+0.8 mW



Appears to arise
from inductive
reactance 
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Suspect Claim 2: 



The amplified voltage from the DUT is multiplied by both a 
sine and a cosine wave with the same frequency and phase 
as the applied source and then put through a low pass 
filter. In most cases, the multiplication and filtering is 
performed digitally within the lock-in amplifier after the 
DUT signal is digitized.

Simplified block diagram of a lock-in amplifier setup 
to measure the voltage of a DUT at low power. 
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….and hence the mixed 
internal/external method

--shown previously and in the next slide



VS = Vin: Supply Voltage

~190 mV; 1Hz-100KHz

monitor Supply Voltage

reference frequency

1 Hz – 100 kHz

Vout ~ 1- 10mV

Rseries
Rwire

Function Generator
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DMM 
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And for the inductance…



y = 1.019E-07x - 3.166E-04
R² = 9.999E-01

L = 102 nH
L (theory) = 133 nH
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Xi_int =  (5.477E-0 4 mH) - 1.915E-02

Xi_ext =  5.232E-04 mH) + 2.176E-01
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Conclusions
In spite of the Tupta (whitepaper) claim, a lock-in 
amplifier, when utilized effectively, will indeed provide 1% 
accuracy in the measurement of such a low resistance 
(Rexp~31mΩ) acquired within the low power limit 
(Pexp~30nW) ascribed therein.

The characterization of in-phase (real) and out-of-phase 
(imaginary) voltage drops across the resistive wire as 
functions of frequency show that inductive reactance, and 
NOT capacitive reactance, is indeed the major contributor 
to the complex impedance.  This conclusion follows quite 
naturally from using the lock-in amplifier as a vector 
voltmeter, and is based primarily on elementary notions of 
impedance. 


