Introduction to low-level
measurement techniques using
short segments of conducting wire



UNCP physics students investigated short segments
(length ~ 10-45 cm, resistance ~ 33-45 m(2) of
copper wire (AWG 30, 24,22) to integrate
information using an exhaustive list of activities.

* Effects of 60 Hz and 120 Hz notch filters of the SR
830 lock-in amplifier (refutation of Keithley
“white paper”)

* Calculation of resistance (pl/a) with wire
diameter measured using diffraction pattern

 AC voltage characterization using SR 830 lock-in
amplifier (refutation of a previous AJP article)



Cannot be trusted for high accuracy constraints

) Turns of wire, Copper
Diameter ) ) Area ) &
no insulation resistancel®]
AWG
(in) (mm) | (perin) (percm) (kcmil) | (mm2) (Q/km) | (Ekt)
P P (m{im)  (mft)
21 0.0285 0.723 351 13.8 0.810 0.410 4200 12.80
22 0.0253 0.644 395 15.5 0.642 0.326 52 .96 16.14
23 0.0226 0.573 443 17.4 0.509 0.258 66.79 20.36
24 0.0201 0.511 497 19.6 0.404 0.205 84 22 2567
25 0.0179 0.455 55.9 220 0.320 0.162 106.2 32.37
26 0.0159 0.405 62.7 247 0.254 0.129 133.9 40.81
27 0.0142 0.361 70.4 27.7 0.202 0.102 168.9 51.47
28 0.0126 0.321 791 31.1 0.160 0.0810 | 2129 64.90
29 0.0113 0.286 88 8 35.0 0127 00642 | 2685 81.84
30 0.0100 0.255 Q9 7 393 0.101 005090 | 3386 103.2
31 0.00893 | 0.227 112 44 1 00797 | 0.0404 @ 4269 130.1




Simplified block diagram of a lock-in amplifier setup
to measure the voltage of a DUT (e.g. a wire) at low
power.
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The amplified voltage from the DUT is multiplied by both a
sine and a cosine wave with the same frequency and phase
as the applied source and then subject to a low pass filter.
In most cases, the multiplication and filtering is performed
digitally within the lock-in amplifier after the DUT signal is
digitized.



Extraction of signals
buried in noise



Our latest method of choice:
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Vi, =190 mV; 1Hz-100KHz
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voltage across wire

1-10pV

V.

imaginary

out of phase =

In phase

LIA as “vector voltmeter” V= v o circuit

‘ l SR830 FUNCTIONAL BLOCK DIAGRAM ~190 mV 1Hz-100KHz



In phase voltage, V...,
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In phase voltage, V..,
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In phase voltage, V..,
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In phase voltage, V..,
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In phase voltage, V.,

In-phase voltage vs. frequency
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In phase voltage, V.,
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~30 Hz zoom

precision, in this case
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Better than 1% accuracy (0.5 sec constraint)
Suspect Claim 1: Keithley white paper
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Tupta, "AC versus DC Measurement Methods for Low-power
Nanotech and Other Sensitive Devices", 2007

Minimum measurement power needed

to maintain <1% noise and error
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Next few slides:

Lock-in configuraiton

» 1f+2f line filters

» “Sync” function

» Fixed frequency of 85 Hz

... perhaps a novel —
and potentially useful approach?
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The in phase signal, acquired utilizing a
single ended measurement, suffers
from an offset. The voltage should be
acquired with differential
measurement.

1+2 line (60 + 120 Hz) filter appears to
provide an effective input offset
reduction and slight noise suppression.




Out-of-phase voltage, V,,,ginary
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Out-of-phase voltage, V,,,qinary
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Out-of-phase voltage, V,,,qinary

Explanation of offset reduction
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PHY 4200 final results of 1f+2f measurements at 85 kHz

Includes comparison to theoretical result.

internal ref | 31.77+40.03 | mQ)

external ref | 31.81+0.07 mQ

R=pl/a | 31.640.8 = mQ |ewecter

Recall, from AWG table:
(AWG) ~ 338.6m2/mx0.10m = 34 mQ

ere



How the “expected” result was obtained...

The expected resistance, R of a copper wire Is
known to obey the relation:

R:pl
a

= p:resitivity; |:length; a:cross-sectional area

The resistivity, pis actually temperature, T dependent —
p(T)=po(l+a(T-T,))
= p, =1.678x10°Qm; o =0.003862/°C; T, =20°C
p(T =205+0.2)=1.682x10° Om = room temp + drift
p(T =20.5)=1.6815(15)x10"°® Om = resistivity



The cross sectional area, a was calculated from
measurements using optical interferometry. The
relation characterizing the fringe pattern generated
by diffraction when a laser beam, with wavelength, A,
IS obstructed by a wire with diameter, d Is given by:

d=41 L L : distance to fringe pattern y: mean fringe spacing
y

a=rxd?/4




Length, [ |fringe spacing, y | diameter, d | area, a
mm mm mm mm’
3344(3) 8.13(5) 0.2605(16) 10.0533(5)
3344(3) 8.08(5) 0.2621(16) 10.0539(5)
3344(3) 8.13(5) 0.2603(16) 10.0532(5)
3344(3) 8.19(5) 0.2581(16) 10.0523(5)
Measured at 4 mean 0.2603 0.0332
points along the stdevp (o) 0.0014 0.0006
length of wire prop unc (0) 0.0016 0.0005
~ 50 fringes 3
RESULT a=rnd /4
a(5) - statistics  0.532(6) mm’
a (5)- estimated  0.535(5) mm’




“Expected” result
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A basic lock-in amplifier experiment for the undergraduate laboratory

K. G. Libbrecht,® E. D. Black, and C. M. Hirata
Norman Bridee Laboratory of Physics, California Institute of Technology 264-33, Pasadena, California 91125

(Received 9 August 2002: accepted 9 April 2003)  gg
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Fig. 5. A measurement of R ;. as a function of the signal generator fre-
quency with a large fixed mput voltage. Specifically, ¥, . was a 1-V sine

Suspec t C I a i m 2 . wave, and the lock-in time constant was 3 s. Ry, was determined using

etther the total signal amplitude g g or the in-phase component Fp y. This
\ graph demonstrates systematic effects in the measurement that arise from
capacttive effects. These effects are reduced by using the in-phase signal

Vg x. but they are not eliminated.



Simplified block diagram of a lock-in amplifier setup
to measure the voltage of a DUT at low power.
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The amplified voltage from the DUT is multiplied by both a
sine and a cosine wave with the same frequency and phase
as the applied source and then put through a low pass
filter. In most cases, the multiplication and filtering is
performed digitally within the lock-in amplifier after the
DUT signal is digitized.



Wire resistance, R (mQ2)
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Wire resistance, R (mQ)
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....and hence the mixed
internal/external method

--shown previously and in the next slide
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Function Generator

reference frequency BNC 645

1 Hz — 100 kHz
monitor Supply Voltage

V¢ = Vin: Supply Voltage
~190 mV; 1Hz-100KHz

series



And for the inductance...
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The self inductance of a single wire in free space is defined below.
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Reactance, X (mQ)

X; (mQ) vs. w (rad/s): 45.5 cm wire (AWG 24)
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Conclusions

In spite of the Tupta (whitepaper) claim, a lock-in
amplifier, when utilized effectively, will indeed provide 1%
accuracy in the measurement of such a low resistance
(R.,.~31mQ) acquired within the low power limit
(P...~30nW) ascribed therein.

exp

exp

The characterization of in-phase (real) and out-of-phase
(imaginary) voltage drops across the resistive wire as
functions of frequency show that inductive reactance, and
NOT capacitive reactance, is indeed the major contributor
to the complex impedance. This conclusion follows quite
naturally from using the lock-in amplifier as a vector
voltmeter, and is based primarily on elementary notions of
impedance.



